Design of Integrated Mixed Technology Microsystems

Anantha Krishnan

Microsystems Technology Office DARPATECH September 2000

Technology Trends

- SYSTEM COMPLEXITY IS INCREASING !!
- ➤ DESIGN AND PROTOTYPING COSTS ARE INCREASING AT A GREATER RATE (TRIAL & ERROR APPROACH) !!
- ➤ INTUITION AND 'EXPERIENCE' ARE JUST NOT GOING TO CUT IT !!

NEED CAD TOOLS TO SIMULATE AND PREDICT SYSTEM PERFORMANCE BEFORE PHYSICAL PROTOTYPING IS DONE!!

Design Approach

Today, mixed technology "systems" are developed from the "bottom up" using many different components

Ad-hoc Design, Research Codes, Single User Tools

Design Approach

Future mixed technology
systems must
be designed from the "top
down" using a consistent set
of requirements

SYSTEM

SUB-SYSTEM

COMPONENT

Methodology, Design Rules and Checks, Multi-User Tools

Goal is to provide VLSI-like Design Tools for Integrated Mixed Technology Systems

Integrated Microsystems

- Microsystem technology is much more complex due to interaction of mixed technologies - electronics, mechanics, optics, fluidics, chemistry, biology, ...
- But same analogy holds: Microsystem-EDA essential for growth of Integrated System technology!

Biological/Chemical Sensor Systems

Molecular Recognition

- → Development of models for bio-molecular interactions in microsystems
 - Time Scale of Process

Signal Transduction

♦ Development of models for the transduction process

Microfluidics

♦ Models for Bio-Molecular and Fluidic Transport

Electronic and Photonic Systems

Mixed Signal (Analog-Digital) Systems

Advanced Digital Receiver Chip (A-D and D-A Converters)

Mixed Electronic/Photonic

Systems

Integrated VCSEL-Detector Arrays

Lack of Automated Design Methodologies;
More of an ad hoc approach

Integrated System Analysis

 Development of reduced models and integrated system models for mixed technology microsystems

Linear as well as Non-Linear Systems!

Demonstration of Mixed Technology Design – Example 1

Reworking the (Analog Devices) 50g Sensor into a 190g device

Full 3D simulation improved trim yield by 20% because of better sensitivity prediction.

- Accurate calculation of the trim factors for this particular device was only possible using the 3D electromechanical (Composite CAD) tools
- The trim factors are essential in order to trim the device accurately. Without the simulations, AD would not have a product

Demonstration of Mixed Technology Design – Example 2

Stanford Microfluidics Laboratory

• Simulation enabled development of a new design that minimizes dispersion in a miniaturized electro-osmosis process !!

Demonstration of Mixed Technology Design – Example 3

 Model reduction enabled orders of magnitude reduction in simulation cost without sacrificing model accuracy!

Focus Areas

- ◆ Quantitative models (scaling relationships and phenomenological models) for microfluidic devices, MEMS, photonic components, etc.
- → Model abstraction/reduction and integration at the microsystem scale - Integrated System Analysis

Capability to design microsystems with a high level of multi-disciplinary integration – Enabling technology for exponential growth!!